### 3000-18000 VA

### 3-18 kVA Programmable AC and DC Power Source / Analyzer

### 135–400 V

• Backward Compatible

Compatible with HP6834B & iL Series AC Sources Function & bus compatible with the Agilent HP6834B & California Instruments iL Series

- Three phase and Single phase modes Ideally suited for avionics and defense applications
- 3 KVA to 18 KVA Power Levels Match power source and cost to application requirements
- Arbitrary Waveform Generator Test products for harmonics susceptibility
- Built-in Power Analyzer Performs voltage and load current harmonic analysis and waveform acquisition
- Standard IEEE-488, USB & RS232 Remote control interface for ATE system integration included

#### Integrated System

The Lx Series represents a modern AC power source that addresses increasing demands on test equipment to perform more functions at a lower cost. By combining a flexible AC power source with a harmonic power analyzer, the Lx Series systems are capable of handling applications that would traditionally have required multiple instruments.

The sleek integrated approach of the Lx Series avoids the cable clutter that is commonly found in AC test setups. All connections are made internally and the need for external digital multimeters, power harmonics analyzer and current shunts is completely eliminated.

Using a state of the art Digital Signal Processor in conjunction with precision A/D converters, the Lx Series provides more accuracy and resolution than can be found in most dedicated harmonic power analyzers. Since many components in the Lx Series are shared between the AC source and the power analyzer, the total cost of the integrated system is less than the typical cost of a multiple unit system.

#### Easy To Use Controls

The Lx Series is completely microprocessor controlled and can be operated from a simple front panel keypad. An analog control located next to the backlit alphanumeric LCD display allows output voltage and frequency to be slewed up or down dynamically. The control employs a dynamic rate change algorithm that combines the benefits of precise control over small parameter



changes with quick sweeps through the entire range. A keypad makes precise entries simple.

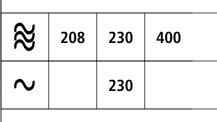
#### Applications

With precise output regulation and accuracy, high load drive current, multi or single phase mode and built-in power analyzer measurement capabilities, Lx Series AC source/analyzers address many application areas for AC power testing. Additional features, like line arbitrary waveform generation and available DO 160, MIL 704, or Airbus test standards, make the Lx Series a good choice for avionics or defense applications. All Lx Series AC sources are equipped with IEEE-488 (GPIB), USB and RS232C remote control interfaces and support SCPI command language programming. An ethernet interface option is available.

#### HP6834B Compatibility

The Lx Series offers functional and bus compatibility with the Agilent HP6834B AC power sources as well as the CI iL Series AC power sources and may be used in existing test systems without the need to modify program code.

Standard Waveforms


The Lx Series provides three standard waveforms that are always available for output. The standard waveforms are:

- Sinewave for normal AC applications.
- Squarewave for special applications.

• Clipped Sinewave - Simulates THD leveLx to test for harmonic distortion susceptibility.

In addition to these standard waveforms, user defined waveform can be downloaded over the bus.

# 0–132 A



ETHERNET COSE GPIE RS232

#### AMETEK Programmable Power

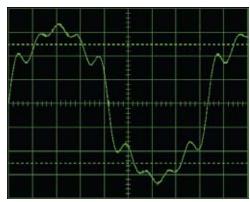
9250 Brown Deer Road San Diego, CA 92121-2267 USA



#### Lx Series - AC Transient Generation Harmonic Waveform Generation

Using the latest DSP (Digital Signal Processing) technology, the Lx Series controller is capable of generating harmonic waveforms to test for harmonics susceptibility of a unit under test. With the help of the supplied Windows Graphical User Interface program, defining harmonic waveforms is as easy as specifying the relative amplitude and phase angle for each of up to 50 harmonics. The waveform data points are generated and downloaded by the GUI to the AC source through either IEEE-488 or RS232C bus and remain in non-volatile memory. Up to twelve waveforms can be stored and given a user defined name for easy recall.

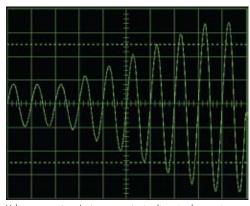
#### Arbitrary Waveform Generation


Using the provided GUI program or custom software, the user also has the ability to define arbitrary waveform data. Complex AC voltage anomalies can be simulated this way. The GUI program provides a catalog of custom waveforms and also allows real-world waveforms captured on a digital oscilloscope to be downloaded to one of the AC source's waveform memories. Downloaded waveforms are retained in nonvolatile memory for recall over the bus or from the front panel. User defined waveform names make it easy to recall the desired waveform when needed.

#### Lx Series - Configuration Options Transient Programming


To simulate common line disturbance occurrences, the Lx Series offers a list of transient steps. These steps can be programmed from the front panel or downloaded over the interface using the GUI program supplied. The GUI allows libraries of commonly used line disturbances to be created on disk for quick recall. Once downloaded, the transient program can be executed from the PC or from the front panel. AC transient generation allows the effect of rapid changes in voltage, frequency, phase angle and waveform shape on the unit under test to be analyzed. The combination of transients and user defined arbitrary waveforms creates a powerful test platform for AC powered products.

#### Lx Series - Measurement and Analysis


The Lx Series measurement system is based on real-time digitization of the voltage and current waveforms using a 4K sample buffer. The digitized waveform data is processed by a Digital Signal Processor to extract conventional load values such as rms voltage, rms current, real and apparent power. The same data is also used to perform Fast Fourrier Transformation (FFT) to extract the harmonic amplitude and phase angle of up to 50 harmonics.



Harmonic waveform, Fund., 3rd, 5th, 7th and 9th.



Simulation of severe ringing on the output of a UPS.



Voltage sweep transient causes output voltage to change at a programmed rate.

#### **Standard Measurements**

The following standard measurements are available from the front panel or via the bus:

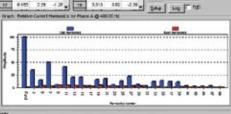
- Frequency and Phase
- Voltage (rms)
- Current(rms) and Peak Current
- Crest Factor
- Neutral Current (rms)
- Real Power and Apparent Power
- Power Factor

#### Advanced Measurement Functions

In addition to standard load parameters, the Lx Series is capable of measuring voltage and current amplitude and phase harmonics up to the 50th harmonic (for fundamental frequencies up to 250 Hz). Total harmonic distortion of both voltage and current is also available. Harmonic analysis data can be displayed on the front panel display or on the PC using the GUI program. The GUI can also be used to save and print harmonics data in tabular, bar graph or time domain formats. The acquired voltage and current timedomain waveforms for each output phase can be displayed using the GUI program. Waveform displays on the PC include voltage and current combined, three phase voltage, three phase current and true power. The time-domain data is aLxo available for transferr to a PC through IEEE-488, USB, RS232C, or Ethernet (option) when using custom software.

#### **Diagnostics Capability**

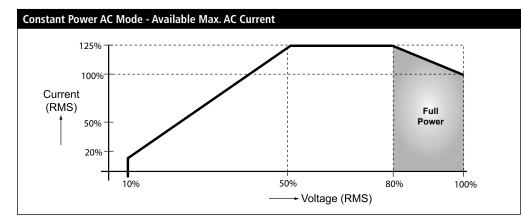
The AC Source can perform a self test and report any errors. The self test will run until the first error is encountered and terminate. The response to the self test query command will either be the first error encountered or 0 if no error was found. (Self test passed).


#### Windows Instrument Control Software

A Windows Vista/2000/XP<sup>TM</sup> compatible Instrument Control Software (GUI) offers a soft front panel interface for operation from a PC. The following functions are available:

- Steady state output control (all parameters).
- Create, run, save and print transient programs.
- Generate and save harmonic waveforms.
- Generate and save arbitrary waveforms.
- Download data from a digital storage oscilloscope.
- Measure and log standard measurements.
- Capture and display Voltage and Current waveforms.
- Measure, display, print and log harmonic voltage and current measurements.

#### AC Source Measure Ögse 400.00 F Phate A Freq (Hz) Ø m ----Cancel Votage (V ms): 115.85 115.95 115.9 9.048 8.966 Current (A mail 9.02 1510 873.48 888.41 881.0 P Power (M) 1.045 1.028 Acet Power (IVA) 0.85 0.85 0.8 17.8. or Facto 28.061 30,006 27.300 Peak Curr (A): str Court Factor 3.10 3.35 30 VILLI Line to Line Votinge P Vec (L-L) Vite (L-L) P VICIL-LX F Log Data every T Stay on Top secs to: during bit Standard measurements for all phases






Relative Current Harmonics shown in table and chart.



Soft front panel control through Windows GUI.



3000–18000 VA

| Output                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Maximum Power per phase                                                                                                                                                                                                                          | 3000Lx: 1 pł                                                                                                                                                                                                                                                    | 3000Lx: 1 phase: 3000 VA, 3 phase: 1000 VA; 4500Lx: 1 phase 4500 VA, 3 phase 1500 VA; 6000Lx: 1 phase 5770 VA, 3 phase: 1923 VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Power factor                                                                                                                                                                                                                                     | 0 to unity at                                                                                                                                                                                                                                                   | 0 to unity at full output VA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Voltage Ranges                                                                                                                                                                                                                                   | Range                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                  | AC                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                  | See HV and                                                                                                                                                                                                                                                      | Line Regulation < 0.02 % for 10 % line change                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                  | See -nv anu                                                                                                                                                                                                                                                     | See -HV and EHV options for alternative voltage range pairs.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Programming Accuracy (25°C ±5°C                                                                                                                                                                                                                  | <b>J</b> .                                                                                                                                                                                                                                                      | Voltage (rms): ± (0.05% + 0.25) V from 5.0 V to FS; Frequency: ± 0.025 45 Hz - 819.1 Hz, ± 0.7 % > 819.1 Hz; Phase: ± 1° 45-10<br>± (1° + 1°/kHz) 100 Hz-1kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   | ± 1° 45-100 ŀ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Frequency Range                                                                                                                                                                                                                                  | 17 Hz - 1000                                                                                                                                                                                                                                                    | 17 Hz - 1000 Hz (see -HF option for higher output frequencies)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Frequency Resolution                                                                                                                                                                                                                             | 0.01 Hz at < 81.9 Hz, 0.1 Hz at 82.0 to 819.1 Hz, 1 Hz at > 819 Hz                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Max RMS Current                                                                                                                                                                                                                                  | V Range V I                                                                                                                                                                                                                                                     | nigh V low <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | < At Full Powe                                                                                                                                                                                                  | r Model                                                                                                                                                                                           | 3000Lx-3 Ø                                                                                                                                                                                                       | 3000Lx-1 Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4500Lx-3 Ø                                                                                                                                                                                | 4500Lx-1Ø                                                                                                                                                                                                                  | 6000Lx-3 Ø                                                                                                                                                                                                                                        | 6000Lx-1 Ø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                  | -33ø6                                                                                                                                                                                                                                                           | 4A 12.8A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | At FS Voltage >                                                                                                                                                                                                 | > V Low                                                                                                                                                                                           | 6.6 A                                                                                                                                                                                                            | 20.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 10.0 A                                                                                                                                                                                    | 30.0 A                                                                                                                                                                                                                     | 19.2 A                                                                                                                                                                                                                                            | 38.4 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                  | -1 1ø 19                                                                                                                                                                                                                                                        | 2 A 38.4 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | V High                                                                                                                                                                                            | 3.3 A                                                                                                                                                                                                            | 10.0 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 5.0 A                                                                                                                                                                                     | 15.0 A                                                                                                                                                                                                                     | 6.4 A                                                                                                                                                                                                                                             | 12.8 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                  | Note: Constant                                                                                                                                                                                                                                                  | power mode on 30                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 000Ls and 4500L                                                                                                                                                                                                 | s provides increa                                                                                                                                                                                 | sed current at red                                                                                                                                                                                               | uced voltage; 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 000Ls provides i                                                                                                                                                                          | naximum voltage                                                                                                                                                                                                            | 2.                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Current Limit                                                                                                                                                                                                                                    | Programma                                                                                                                                                                                                                                                       | able from 0 Ar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mps to max                                                                                                                                                                                                      | imum curre                                                                                                                                                                                        | nt for selecte                                                                                                                                                                                                   | d range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Peak Current                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 | X (Irms @ full s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e); 6000Lx: 3                                                                                                                                                                             | X (Irms @ fu                                                                                                                                                                                                               | II scale voltage                                                                                                                                                                                                                                  | 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Output Noise                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 | yp. (20 kHz to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 5                                                                                                                                                                                                               |                                                                                                                                                                                                   |                                                                                                                                                                                                                  | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Harmonic Distortion                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                 | scale voltage,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | oad)                                                                                                                                                                                              |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Isolation Voltage                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                 | Itput to chassis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 | ,                                                                                                                                                                                                 |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Output Relay                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                 | controlled and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                 | d output rela                                                                                                                                                                                     | ,                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Input                                                                                                                                                                                                                                            | 1 ush button                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | bus controller                                                                                                                                                                                                  | a output rela                                                                                                                                                                                     | 1                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           |                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Voltage                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                 | DLx, 4500Lx, 90                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                 |                                                                                                                                                                                                   |                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                           | ption -400: 4                                                                                                                                                                                                              | 00 ± 10% VA                                                                                                                                                                                                                                       | C (L-L, 3 Phas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| •                                                                                                                                                                                                                                                | ModeLx 600<br>Notes: 1. Input of<br>Model                                                                                                                                                                                                                       | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase                                                                                                                                                              | ndard 208-23<br>-400 option not<br>) 4500Lx                                                                                                                                                       | 0 + 10% VAC<br>availble on 6000                                                                                                                                                                                  | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L                                                                                                                                                                     | x can be operate                                                                                                                                                                                                           | ed from 1 phase A<br>D-254 V: 50 A                                                                                                                                                                                                                | c.<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Voltage                                                                                                                                                                                                                                          | ModeLx 600<br>Notes: 1. Input r                                                                                                                                                                                                                                 | DLx, 12000Lx, 1<br>nust be specified w                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18000Lx: Star<br>vhen ordering. 2.                                                                                                                                                                              | ndard 208-23<br>400 option not                                                                                                                                                                    | 0 + 10% VAC<br>availble on 6000                                                                                                                                                                                  | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):                                                                                                                                     | , x can be operate<br>t @ 180<br>@ 360                                                                                                                                                                                     | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A                                                                                                                                                                                               | c.<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Voltage<br>Line Current (rms per phase)                                                                                                                                                                                                          | ModeLx 600<br>Notes: 1. Input n<br>Model<br>187 VLL<br>360 VLL                                                                                                                                                                                                  | DLx, 12000Lx, 1           nust be specified w           3000Lx         300           19 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18000Lx: Star<br>when ordering. 2.<br>00Lx (1Phase<br>32 A                                                                                                                                                      | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A                                                                                                                                               | 0 + 10% VAC<br>availble on 60000<br>6000Lx (@ 3<br>38 A                                                                                                                                                          | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)<br>000Lx. 3. 3000L                                                                                                                                                                     | , x can be operate<br>t @ 180<br>@ 360                                                                                                                                                                                     | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A                                                                                                                                                                                               | c.<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Voltage<br>Line Current (rms per phase)<br>Efficiency                                                                                                                                                                                            | ModeLx 600           Notes: 1. Input           Model           187 VLL           360 VLL           75% typical                                                                                                                                                  | DLx, 12000Lx, 1           nust be specified w           3000Lx         300           19 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 18000Lx: Star<br>when ordering. 2.<br>00Lx (1Phase<br>32 A                                                                                                                                                      | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A                                                                                                                                               | 0 + 10% VAC<br>availble on 60000<br>6000Lx (@ 3<br>38 A                                                                                                                                                          | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):                                                                                                                                     | , x can be operate<br>t @ 180<br>@ 360                                                                                                                                                                                     | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A                                                                                                                                                                                               | c.<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor                                                                                                                                                                            | ModeLx 600           Notes: 1. Input n           Model           187 VLL           360 VLL           75% typical           0.6 typical                                                                                                                          | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A<br>10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18000Lx: Star<br>when ordering. 2.<br>00Lx (1Phase<br>32 A                                                                                                                                                      | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A                                                                                                                                               | 0 + 10% VAC<br>availble on 60000<br>6000Lx (@ 3<br>38 A                                                                                                                                                          | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):                                                                                                                                     | , x can be operate<br>t @ 180<br>@ 360                                                                                                                                                                                     | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A                                                                                                                                                                                               | c.<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time                                                                                                                                                            | ModeLx 600           Notes: 1. Input           Model           187 VLL           360 VLL           75% typical                                                                                                                                                  | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A<br>10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 18000Lx: Star<br>when ordering. 2.<br>00Lx (1Phase<br>32 A                                                                                                                                                      | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A                                                                                                                                               | 0 + 10% VAC<br>availble on 60000<br>6000Lx (@ 3<br>38 A                                                                                                                                                          | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir<br>(1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):                                                                                                                                     | , x can be operate<br>t @ 180<br>@ 360                                                                                                                                                                                     | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A                                                                                                                                                                                               | c.<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System                                                                                                                                                  | ModeLx 600           Notes: 1. Input           Model           187 VLL           360 VLL           75% typical           0.6 typical           At least 10 m                                                                                                    | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A<br>10 A<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a                                                                                                                                               | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A                                                                                                                                       | 0 + 10% VAC<br>availale on 6000<br>6000Lx (@ 2<br>38 A<br>n/a                                                                                                                                                    | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V)<br>(I<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):<br>ine Frequence                                                                                                                    | x can be operate<br>t @ 180<br>@ 360<br>y: 47-44                                                                                                                                                                           | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>O Hz                                                                                                                                                                                       | c.<br>peak<br>peak                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage                                                                                                                                       | ModeLx 600           Notes: 1. Input n           Model           187 VLL           360 VLL           75% typical           0.6 typical           At least 10 m           Setup: 16 com                                                                          | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A<br>10 A<br>10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /                                                                                                                               | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List                                                                                                                     | 0 + 10% VAC<br>availble on 6000<br>6000Lx (@ :<br>38 A<br>n/a<br>: 100 transient                                                                                                                                 | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II<br>(I<br><br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L<br>Per phase):<br>ine Frequenc<br>t (SCPI mode                                                                                                                      | 2. x can be operate<br>1. (@ 18<br>(@ 36(<br>2.) or 16 transi                                                                                                                                                              | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>O Hz<br>ent registers (.                                                                                                                                                                   | C.<br>peak<br>peak<br>APE mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output                                                                                                               | ModeLx 600           Notes: 1. Input n           Model           187 VLL           360 VLL           75% typical           0.6 typical           At least 10 m           Setup: 16 com                                                                          | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A<br>10 A<br>15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /                                                                                                                               | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List                                                                                                                     | 0 + 10% VAC<br>availble on 6000<br>6000Lx (@ :<br>38 A<br>n/a<br>: 100 transient                                                                                                                                 | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II<br>(I<br><br>t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L<br>Per phase):<br>ine Frequenc<br>t (SCPI mode                                                                                                                      | 2. x can be operate<br>1. (@ 18<br>(@ 36(<br>2.) or 16 transi                                                                                                                                                              | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>O Hz<br>ent registers (.                                                                                                                                                                   | C.<br>peak<br>peak<br>APE mode)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection                                                                                                 | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 m<br>Setup: 16 co<br>Input: Trigger                                                                                                                         | DLX, 12000LX, 1<br>nust be specified w<br>3000LX 300<br>19 A 10 A<br>10 A<br>15<br>ns<br>s measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient                                                                                                            | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA                                                                                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ 2<br>38 A<br>n/a<br>: 100 transient<br>connector: 10                                                                                                               | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) II<br>(I<br>L<br>steps per lis<br>K pull-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | e)<br>000Lx. 3. 3000L<br>Per phase):<br>ine Frequenc<br>t (SCPI mode<br>/ Output: 5                                                                                                       | x can be operate<br>x can be operate<br>a 180<br>a 360<br>y: 47-44<br>y: 47-44<br>e) or 16 transi                                                                                                                          | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>0 Hz<br>ent registers (.<br>or: HCTTL out                                                                                                                                                  | C.<br>peak<br>peak<br>APE mode)<br>put                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage                                                                        | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Co                                                                                                         | DLX, 12000LX, 1<br>nust be specified w<br>3000LX 300<br>19 A 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant ve                                                                                          | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;                                                                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ :<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperal                                                                                              | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II]<br>steps per lis<br>K pull-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L<br>rrush Current<br>Per phase):<br>ine Frequence<br>t (SCPI mode<br>/ Output: 5<br>tic Shutdowr                                                                     | x can be operate<br>x can be operate<br>a 18<br>a 360<br>y: 47-44<br>e) or 16 transi<br>SMA Connect<br>h; Over voltag                                                                                                      | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>O Hz<br>ent registers (<br>or: HCTTL out<br>e: Automatic s                                                                                                                                 | C.<br>peak<br>peak<br>APE mode)<br>put<br>hutdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage<br>Regulatory/RFI Suppresion                                           | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Co                                                                                                         | DLX, 12000LX, 1<br>nust be specified w<br>3000LX 300<br>19 A 10 A<br>10 A<br>15<br>ns<br>s measurement                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant ve                                                                                          | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;                                                                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ :<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperal                                                                                              | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II]<br>steps per lis<br>K pull-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L<br>rrush Current<br>Per phase):<br>ine Frequence<br>t (SCPI mode<br>/ Output: 5<br>tic Shutdowr                                                                     | x can be operate<br>x can be operate<br>a 18<br>a 360<br>y: 47-44<br>e) or 16 transi<br>SMA Connect<br>h; Over voltag                                                                                                      | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>O Hz<br>ent registers (<br>or: HCTTL out<br>e: Automatic s                                                                                                                                 | C.<br>peak<br>peak<br>APE mode)<br>put<br>hutdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage<br>Regulatory/RFI Suppresion                                           | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Co                                                                                                         | DLX, 12000LX, 1<br>nust be specified w<br>3000LX 300<br>19 A 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant ve                                                                                          | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;                                                                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ :<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperal                                                                                              | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II]<br>steps per lis<br>K pull-up                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L<br>rrush Current<br>Per phase):<br>ine Frequence<br>t (SCPI mode<br>/ Output: 5<br>tic Shutdowr                                                                     | x can be operate<br>x can be operate<br>a 18<br>a 360<br>y: 47-44<br>e) or 16 transi<br>SMA Connect<br>h; Over voltag                                                                                                      | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>O Hz<br>ent registers (<br>or: HCTTL out<br>e: Automatic s                                                                                                                                 | C.<br>peak<br>peak<br>APE mode)<br>put<br>hutdown                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Dverload/Temp/Voltage<br>Regulatory/RFI Suppresion<br>Measurement<br>Measurements - Standard | ModeLx 600<br>Notes: 1. Input<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Co<br>IEC 1010, EN                                                                                            | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant vo<br>0082-2, CE, El                                                                        | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;<br>MC, and safe<br>Phase                                                           | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ 2<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperat<br>ty mark require<br>Voltage (AC)                                                           | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) Ir<br>(I)<br>208V) Creation<br>steps per lis<br>K pull-up<br>cure: Automa<br>cments / R<br>Current                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | e)<br>000Lx. 3. 3000L<br>Per phase):<br>ine Frequency<br>t (SCPI mode<br>/ Output: S<br>tic Shutdowr<br>IF Suppression<br>(AC rms) R                                                      | x can be operate<br>x can be operate<br>a 180<br>a 360<br>y: 47-44<br>e) or 16 transi<br>SMA Connect<br>b SMA Connect<br>a; Over voltag<br>on: CISPR 11,<br>eal Power                                                      | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>0 Hz<br>ent registers (.<br>or: HCTTL outp<br>e: Automatic s<br>Group1, Class<br>Apparent<br>Power                                                                                         | APE mode) Dut hutdown A Power Factor                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage<br>Regulatory/RFI Suppresion<br>Measurement<br>Measurements - Standard | ModeLx 600<br>Notes: 1. Input for<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Cc                                                                                                        | DLX, 12000LX, 1<br>nust be specified w<br>3000LX 300<br>19 A 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18000Lx: Star<br>when ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant ve<br>0082-2, CE, El<br>p<br>z 4                                                            | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;<br>MC, and safe                                                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ :<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperat<br>ty mark require                                                                           | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V)<br>(I<br>L<br>Steps per lis<br>K pull-up<br>ure: Automa<br>ements / R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e)<br>000Lx. 3. 3000L<br>Per phase):<br>ine Frequency<br>t (SCPI mode<br>/ Output: S<br>tic Shutdowr<br>IF Suppression<br>(AC rms) R                                                      | x can be operate<br>x can be operate<br>a 18(<br>360<br>y: 47-44<br>y: 47-44<br>y: 0 or 16 transi<br>5MA Connect<br>a; Over voltag<br>on: CISPR 11,                                                                        | ed from 1 phase A<br>D-254 V: 50 A<br>D-440 V: 83 A<br>0 Hz<br>ent registers (.<br>or: HCTTL out<br>e: Automatic s<br>Group1, Class<br>Apparent                                                                                                   | C.<br>peak<br>peak<br>APE mode)<br>Dut<br>hutdown<br>APE mode)<br>Dut                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time                                                                                                                                                            | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Cc<br>IEC 1010, EN<br>Parameter<br>Range<br>Accuracy* (±                                                   | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A 1<br>10 A 1<br>10 A 1<br>10 A 5<br>mplete instrume<br>s measurement<br>s measurement<br>50081-2, EN50<br>Frequency<br>45-81.91 H;<br>82.0-819.1<br>> 819 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant vi<br>0082-2, CE, El<br>2<br>4<br>Hz 1                                                      | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;<br>MC, and safe<br>Phase<br>I5-100 Hz<br>100 Hz                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ 3<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperat<br>ty mark require<br>Voltage (AC)<br>0-300 V                                                | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II]<br>steps per lis<br>K pull-up<br>cure: Automa<br>ements / R<br>Current<br>0-50 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e)<br>000Lx. 3. 3000L<br>rrush Current<br>Per phase):<br>ine Frequence<br>t (SCPI mode<br>/ Output: 5<br>tic Shutdowr<br>IF Suppressio<br>(AC rms) R<br>0                                 | x can be operate<br>x can be operate<br>a 18<br>360<br>y: 47-44<br>e) or 16 transi<br>SMA Connect<br>sMA Connect<br>n; Over voltag<br>pn: CISPR 11,<br>eal Power<br>-6 kW                                                  | ed from 1 phase A<br>-254 V: 50 A<br>-440 V: 83 A<br>0 Hz<br>ent registers (.<br>or: HCTTL outp<br>e: Automatic s<br>Group 1, Class<br>Group 1, Class<br>Apparent<br>Power<br>0-6 kVA                                                             | APE mode) Dut hutdown i A Power Factor 0.00-1.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage<br>Regulatory/RFI Suppresion<br>Measurement<br>Measurements - Standard | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Cc<br>IEC 1010, EN<br>Parameter<br>Range<br>Accuracy* (±<br>1 ø mode (-1)                                  | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A 1<br>10 A 1<br>10 A 1<br>10 A 5<br>10 A 5<br>10 A 5<br>10 A 1<br>10 A | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant vi<br>0082-2, CE, El<br>2<br>4<br>Hz<br>1<br>ligit<br>C                                     | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;<br>MC, and safe<br>Phase<br>15-100 Hz<br>100-1000 Hz<br>0.5°                       | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ 2<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperat<br>ty mark require<br>Voltage (AC)                                                           | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II]<br>(II]<br>steps per lis<br>K pull-up<br>ure: Automa<br>ements / R<br>Current<br>0-50 A<br>nV 0.1% +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):<br>ine Frequence<br>t (SCPI mode<br>/ Output: S<br>tic Shutdowr<br>IF Suppression<br>(AC rms) R<br>0<br>150 mA 0                    | x can be operate<br>x can be operate<br>1 @ 18(<br>@ 36(<br>y: 47-44<br>e) or 16 transi<br>5MA Connect<br>5MA Connect<br>a; Over voltag<br>on: CISPR 11,<br>eal Power<br>-6 kW<br>.15% + 9 W                               | ed from 1 phase A<br>-254 V: 50 A<br>-440 V: 83 A<br>0 Hz<br>ent registers (<br>or: HCTTL outp<br>e: Automatic s<br>Group 1, Class<br>Group 1, Class<br>Apparent<br>Power<br>0-6 kVA<br>0.15% + 9 V/                                              | APE mode)  put  APE mode)  put  APE mode)  put  APE mode)  put  A  A  A  A  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage<br>Regulatory/RFI Suppresion<br>Measurement<br>Measurements - Standard | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 n<br>Setup: 16 co<br>Input: Trigger<br>Overload: Cc<br>IEC 1010, EN<br>Parameter<br>Range<br>Accuracy* (±                                                   | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A 1<br>10 A 1<br>10 A 1<br>10 A 5<br>10 A 5<br>10 A 5<br>10 A 1<br>10 A | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant vi<br>0082-2, CE, El<br>2<br>4<br>Hz<br>1<br>ligit<br>C<br>2                                | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;<br>MC, and safe<br>Phase<br>I5-100 Hz<br>100 Hz                                    | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ 3<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperat<br>ty mark require<br>Voltage (AC)<br>0-300 V                                                | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V) [II]<br>steps per lis<br>K pull-up<br>cure: Automa<br>ements / R<br>Current<br>0-50 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | e)<br>000Lx. 3. 3000L<br>nrush Current<br>Per phase):<br>ine Frequence<br>t (SCPI mode<br>/ Output: 5<br>tic Shutdowr<br>IF Suppression<br>(AC rms) R<br>0<br>150 mA 0<br>50 mA 0         | x can be operate<br>x can be operate<br>a 18<br>360<br>y: 47-44<br>e) or 16 transi<br>SMA Connect<br>sMA Connect<br>n; Over voltag<br>pn: CISPR 11,<br>eal Power<br>-6 kW                                                  | ed from 1 phase A<br>-254 V: 50 A<br>-440 V: 83 A<br>0 Hz<br>ent registers (.<br>or: HCTTL outp<br>e: Automatic s<br>Group 1, Class<br>Group 1, Class<br>Apparent<br>Power<br>0-6 kVA                                                             | APE mode)  put  APE mode)  put  APE mode)  put  APE mode)  put  A  A  A  A  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A  D  A |
| Voltage<br>Line Current (rms per phase)<br>Efficiency<br>Power Factor<br>Hold-up Time<br>System<br>Storage<br>Trigger Input/Output<br>Protection<br>Overload/Temp/Voltage<br>Regulatory/RFI Suppresion<br>Measurement<br>Measurements - Standard | ModeLx 600<br>Notes: 1. Input of<br>187 VLL<br>360 VLL<br>75% typical<br>0.6 typical<br>At least 10 m<br>Setup: 16 co<br>Input: Trigger<br>Overload: Co<br>IEC 1010, EN<br>Parameter<br>Range<br>Accuracy* (±,<br>1 ø mode (-1)<br>3 ø mode (-3)<br>Resolution* | DLx, 12000Lx, 1<br>nust be specified w<br>3000Lx 300<br>19 A 10 A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 18000Lx: Star<br>vhen ordering. 2.<br>00Lx (1Phase<br>32 A<br>n/a<br>ent setups /<br>ts or transient<br>or constant vo<br>0082-2, CE, El<br>2<br>4<br>Hz<br>1<br>ligit<br>C<br>of reading and<br>of reading and | ndard 208-23<br>-400 option not<br>) 4500Lx<br>31 A<br>16 A<br>Transient List<br>t steps - SMA<br>oltage mode;<br>MC, and safe<br>Phase<br>2-100 Hz<br>0.5°<br>2°<br>2.0° / 1°<br>apply above 100 | 0 + 10% VAC<br>available on 6000<br>6000Lx (@ 2<br>38 A<br>n/a<br>: 100 transient<br>connector: 10<br>Over temperat<br>ty mark require<br>Voltage (AC)<br>0-300 V<br>0.5% + 250 r<br>10 mV<br>counts. For multi- | (L-L, 3 Phase<br>x, 12000Lx, 18<br>208V)   In<br>(I)<br>208V)   (I)<br>208V)   I<br>(I)<br>208V)   I<br>208V)   I<br>208V    I<br>208V | e)<br>000Lx. 3. 3000L<br>Per phase):<br>ine Frequency<br>t (SCPI mode<br>/ Output: 5<br>tic Shutdowr<br>IF Suppression<br>(AC rms) R<br>0<br>150 mA 0<br>50 mA 0<br>1<br>ations, current, | x can be operate<br>x can be operate<br>1 @ 180<br>@ 360<br>y: 47-44<br>e) or 16 transi<br>5MA Connect<br>5MA Connect<br>a; Over voltag<br>on: CISPR 11,<br>eal Power<br>-6 kW<br><u>15% + 9 W</u><br>y<br>power range and | ed from 1 phase A<br>-254 V: 50 A<br>-440 V: 83 A<br>0 Hz<br>ent registers (.<br>or: HCTTL out<br>e: Automatic s<br>Group 1, Class<br>Group 1, Class<br>Apparent<br>Power<br>0-6 kVA<br>0.15% + 9 V/<br>0.15% + 3 V/<br>1 VA<br>accuracy specific | APE mode)  peak APE mode)  put  APE mode)  put  A A A A A A A A A A A A A A A A A A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

tions are valid under balanced load conditions only.

### 3000-18000 VA

| Remote Control                                                                                                                                                                              |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|--|
| IEEE-488 Interface (option)                                                                                                                                                                 | IEEE-488 (GPI                                                                                                                                                                                                                         | 3) talker listener. Subset                                                                                                                                                                                                                                                                                                                                                                                     | :: AH1, C0, D                                                                                                                                                                                                                       | C1, DT1, L3, PP0, RL2, SH1,                                                                                                                                                                                                                                                                                                                 | SR1, T6, IEEE-48                                                                                                                                                                                                | 8.2 SCPI Synt                                                                                                      | ах                                                                                                    |                                                                       |  |
| USB Interface & Ethernet                                                                                                                                                                    | Version: USB 1.1; Speed: 460 Kb/s maximum / Ethernet Interface (Optional): specify -LAN option. 10BaseT, 100BaseT, RJ45                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| RS232C Interface                                                                                                                                                                            | Bi-directional serial interface; 9-pin D-shell connector. Handshake: CTS, RTS. Databits: 7 w/ parity, 8 w/o parity. Stopbits: 2.<br>Baud rate: 9600 to 115200. Supplied with RS232C cable / Code and Format: SCPI; APE (option -GPIB) |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Physical Dimensions                                                                                                                                                                         |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Dimensions (per chassis)                                                                                                                                                                    | Height: 10.5" (267 mm), Width: 19" (483 mm), Depth: 23.7" (602 mm) (depth includes rear panel connectors)                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Weight                                                                                                                                                                                      | Chassis: Net: 1                                                                                                                                                                                                                       | Chassis: Net: 193 lbs / 87.7 Kg, Shipping: 280 lbs / 127.3 Kg (for /2 or /3 model configuarations multiply number of chassis).                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Vibration and Shock                                                                                                                                                                         | Designed to m                                                                                                                                                                                                                         | Designed to meet NSTA project 1A transportation leveLx                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Air Intake/Exhaust                                                                                                                                                                          | Forced air cool                                                                                                                                                                                                                       | Forced air cooling, side air intake, rear exhaust                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Temperature & Diagnostics                                                                                                                                                                   | Temperature: (                                                                                                                                                                                                                        | Temperature: Operating: 0 to 35° C, full power / Storage: -40 to +85° C; Diagnostics: Built-in self test available over bus (*TST)                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Rear Panel Connectors                                                                                                                                                                       | Option). *9-pir                                                                                                                                                                                                                       | *Three phase AC input and output terminal block with safety cover. *IEEE-488 (GPIB) connector, USB connector, RJ45 connector (with -LAN Option). *9-pin D-Shell RS232C connector (RS232 DB9 to DB9 cable supplied). *Remote Inhibit (INH) and Discrete Fault Indicator (DFI). *Remote voltage sense terminal block. *Trigger In1 and Trigger Out1. *System interface connectors. *Auxilary Output (Option -AX) |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| <b>Option -AX Specifications</b>                                                                                                                                                            |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Option -AX                                                                                                                                                                                  | the 5 V for lam                                                                                                                                                                                                                       | ip power. 26 Volt-Accu                                                                                                                                                                                                                                                                                                                                                                                         | racy: ± 2%.                                                                                                                                                                                                                         | 5 Vac unregulated outputs. 1<br>Current capacity: 3 ARMS.<br>blt-Accuracy: ± 5%. Current                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                 |                                                                                                                    | ervo-synchro ex                                                                                       | citation, and                                                         |  |
| <b>Option -ADV Specifications</b>                                                                                                                                                           |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | -                                                                                                                                                                                                                                                                                                                                           | х и<br>Х                                                                                                                                                                                                        |                                                                                                                    |                                                                                                       |                                                                       |  |
| Measurements - Harmonics                                                                                                                                                                    | Parameter                                                                                                                                                                                                                             | Frequency Fundamer                                                                                                                                                                                                                                                                                                                                                                                             | ntal Harmoni                                                                                                                                                                                                                        | cs Voltage                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                 | Current                                                                                                            |                                                                                                       |                                                                       |  |
|                                                                                                                                                                                             | Range                                                                                                                                                                                                                                 | 45-250 Hz / 0.09 - 1                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     | Fundamental Harmonic                                                                                                                                                                                                                                                                                                                        | s 2 - 50                                                                                                                                                                                                        |                                                                                                                    | l Harmonics 2                                                                                         | - 50                                                                  |  |
|                                                                                                                                                                                             | Accuracy* (±)                                                                                                                                                                                                                         | 0.01% + 1 digit / 0.                                                                                                                                                                                                                                                                                                                                                                                           | 5% + 1 digit                                                                                                                                                                                                                        | t 750 mV 0.3% + 750 m                                                                                                                                                                                                                                                                                                                       | NV+0.3% /1 kHz                                                                                                                                                                                                  | 0.5 A / 0.3%                                                                                                       | 5 + 150 mA +0                                                                                         | ).3% /1 kHz                                                           |  |
|                                                                                                                                                                                             | Resolution                                                                                                                                                                                                                            | Resolution 0.01 Hz / 0.1 Hz                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 | 10 mA / 10                                                                                                         | mA                                                                                                    |                                                                       |  |
|                                                                                                                                                                                             | * Accuracy specifi                                                                                                                                                                                                                    | ications are in a percent of re                                                                                                                                                                                                                                                                                                                                                                                | ading for single                                                                                                                                                                                                                    | unit in 3-phase mode.                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Waveforms                                                                                                                                                                                   | Pre defined: Si                                                                                                                                                                                                                       | ne, Square, Clipped Use                                                                                                                                                                                                                                                                                                                                                                                        | er defined, 10                                                                                                                                                                                                                      | 024 addressable data points                                                                                                                                                                                                                                                                                                                 | ; Storage: 50 use                                                                                                                                                                                               | r waveforms,                                                                                                       | non-volatile me                                                                                       | emory                                                                 |  |
| Data Acquisition                                                                                                                                                                            | Parameters: Vo                                                                                                                                                                                                                        | ltage, Current time dor                                                                                                                                                                                                                                                                                                                                                                                        | nain, per pha                                                                                                                                                                                                                       | ase; Resolution: 4096 data p                                                                                                                                                                                                                                                                                                                | ooints, 10.4 usec                                                                                                                                                                                               | (1ø) or 31.25                                                                                                      | usec (3ø) samp                                                                                        | oling interval                                                        |  |
| <b>Option -HV Specifications</b>                                                                                                                                                            |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Voltage/Frequency Ranges                                                                                                                                                                    | Low: 0-135 Vo<br>18000Lx: 45 H                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                | equency: Wit                                                                                                                                                                                                                        | h -HF option: 3000Lx, 4500                                                                                                                                                                                                                                                                                                                  | ULX, 6000LX: 45 H                                                                                                                                                                                               | z - 5000 Hz; 9                                                                                                     | 9000Lx, 12000                                                                                         | Lx, 13500Lx,                                                          |  |
| Max RMS Current at Full Power                                                                                                                                                               |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | 22.2 A, Low: 44.4 A; Note: C<br>1500Lx, and max voltage for                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 | odes on 3000                                                                                                       | OLx and 4500L                                                                                         | х.                                                                    |  |
| Max RMS Current at FSVoltage                                                                                                                                                                |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                | 3000Lx: 3 Phase: High: 3.7 A, Low: 7.4 A; 1 Phase: High 11.1 A, Low: 22.2 A; 4500Lx: 3 Phase: High: 5.6, Low 11.1; 1 Phase: High: 16.7 A, Low: 33.3 A; 6000Lx: 3 Phase: High: 7.4 A, Low 14.8 A; 1 Phase: High: 22.2 A, Low: 44.4 A |                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
|                                                                                                                                                                                             |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                             | , .                                                                                                                                                                                                             |                                                                                                                    |                                                                                                       |                                                                       |  |
| Option -EHV Specifications                                                                                                                                                                  |                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                     | _                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
|                                                                                                                                                                                             | Voltage: Low: (                                                                                                                                                                                                                       | )-200 Volt; High: 0-400                                                                                                                                                                                                                                                                                                                                                                                        | ) Volt / Frequ                                                                                                                                                                                                                      | ency: With -HF option: 45 H                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                 |                                                                                                                    |                                                                                                       |                                                                       |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power                                                                                                                                   | 3 Phase: High:                                                                                                                                                                                                                        | 5.0 A, Low 10.0 A; 1 P                                                                                                                                                                                                                                                                                                                                                                                         | hase: High: 1                                                                                                                                                                                                                       | ency: With -HF option: 45 H<br>15.0 A, Low: 30.0 A; Note: C<br>!500Lx, and max voltage for                                                                                                                                                                                                                                                  | z - 2000 Hz<br>Constant power m                                                                                                                                                                                 | nodes on 3000                                                                                                      | DLx and 4500L                                                                                         | Х.                                                                    |  |
| Voltage/Frequency Ranges                                                                                                                                                                    | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Phase                                                                                                                                                                                  | 5.0 A, Low 10.0 A; 1 P<br>ble at reduced voltage f<br>se: High: 2.5 A, Low: 5.                                                                                                                                                                                                                                                                                                                                 | hase: High: 1<br>or 3000Lx, 4<br>0 A; 1 Phase                                                                                                                                                                                       | 15.0 A, Low: 30.0 A; Note: 0                                                                                                                                                                                                                                                                                                                | z - 2000 Hz<br>Constant power m<br>6000Lx<br>500Lx: 3 Phase: I                                                                                                                                                  |                                                                                                                    |                                                                                                       |                                                                       |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power                                                                                                                                   | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Phase                                                                                                                                                                                  | 5.0 A, Low 10.0 A; 1 P<br>ble at reduced voltage f<br>se: High: 2.5 A, Low: 5.                                                                                                                                                                                                                                                                                                                                 | hase: High: 1<br>or 3000Lx, 4<br>0 A; 1 Phase                                                                                                                                                                                       | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>1: High 7.5 A, Low: 15.0 A; 4                                                                                                                                                                                                                                                | z - 2000 Hz<br>Constant power m<br>6000Lx<br>500Lx: 3 Phase: I                                                                                                                                                  |                                                                                                                    |                                                                                                       |                                                                       |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage<br>Option -HF Specifications                                                                     | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Pha:<br>Low: 22.5 A; 6                                                                                                                                                                 | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: 5                                                                                                                                                                                                                                                                                                      | hase: High:<br>or 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 10                                                                                                                                                                        | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>1: High 7.5 A, Low: 15.0 A; 4                                                                                                                                                                                                                                                | z - 2000 Hz<br>Constant power m<br>6000Lx<br>500Lx: 3 Phase: I                                                                                                                                                  |                                                                                                                    |                                                                                                       |                                                                       |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage                                                                                                  | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Pha<br>Low: 22.5 A; 6<br>Parameter<br>Range                                                                                                                                            | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: 5                                                                                                                                                                                                                                                                                                      | hase: High: 1<br>or 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 11<br>Phase<br>< 2000 Hz                                                                                                                                                | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>1: High 7.5 A, Low: 15.0 A; 4<br>0.0 A; 1 Phase: High: 15.0 A                                                                                                                                                                                                                | z - 2000 Hz<br>Constant power m<br>6000Lx<br>500Lx: 3 Phase: I<br>1, Low: 30.0 A<br>Current                                                                                                                     | High: 3.8, Low                                                                                                     | v 7.5; 1 Phase:<br>Apparent                                                                           | High: 11.3 A,                                                         |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage<br><b>Option -HF Specifications</b><br>Measurements:<br>F < 2000 Hz: See standard Lx             | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Pha<br>Low: 22.5 A; 6<br>Parameter<br>Range<br>Accuracy* (±)                                                                                                                           | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: 9<br>Frequency<br>45 - 5000 Hz                                                                                                                                                                                                                                                                         | hase: High: 1<br>or 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 11<br>Phase<br>< 2000 Hz<br>> 2000 Hz                                                                                                                                   | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>High 7.5 A, Low: 15.0 A; 4<br>0.0 A; 1 Phase: High: 15.0 A<br>Voltage (AC)<br>0-300 V                                                                                                                                                                                        | z - 2000 Hz<br>constant power m<br>6000Lx<br>500Lx: 3 Phase: I<br>, Low: 30.0 A<br>Current<br>(AC rms)                                                                                                          | High: 3.8, Low<br>Real Power<br>0-5 kW                                                                             | / 7.5; 1 Phase:<br>Apparent<br>Power<br>0-5 kVA                                                       | High: 11.3 A,<br>Power<br>Factor                                      |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage<br>Option -HF Specifications<br>Measurements:<br>F < 2000 Hz: See standard Lx<br>Specifications; | 3 Phase: High:<br>Current availat<br>3000Lx: 3 Pha:<br>Low: 22.5 A; 6<br>Parameter<br>Range<br>Accuracy* (±)<br>1 ø mode (-1)<br>3 ø mode (-3)                                                                                        | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: 5<br>Frequency<br>45 - 5000 Hz<br>0.1% + 1 digit                                                                                                                                                                                                                                                       | hase: High:<br>for 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 10<br>Phase<br>< 2000 Hz<br>> 2000 Hz<br>> 2000 Hz<br>5°                                                                                                                 | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>High 7.5 A, Low: 15.0 A; 4<br>0.0 A; 1 Phase: High: 15.0 A<br>Voltage (AC)<br>0-300 V<br>< 1000 Hz / > 1000 Hz<br>0.05% + 250 mV<br>0.1% + 0.1%/kHz +300MV                                                                                                                   | z - 2000 Hz<br>constant power m<br>6000Lx<br>500Lx: 3 Phase: I<br>, Low: 30.0 A<br>Current<br>(AC rms)<br>0-50 A<br>0.5% + 150 mA<br>0.5% + 50 mA                                                               | High: 3.8, Low<br>Real Power<br>0-5 kW<br>0.5% + 9 W<br>0.5% + 3 W                                                 | Apparent<br>Power<br>0-5 kVA<br>0.5% + 9 VA<br>0.5% + 3 VA                                            | High: 11.3 A,<br>Power<br>Factor<br>0.00-1.00<br>0.03<br>0.01         |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage<br>Option -HF Specifications<br>Measurements:<br>F < 2000 Hz: See standard Lx<br>Specifications; | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Pha:<br>Low: 22.5 A; 6<br>Parameter<br>Range<br>Accuracy* (±)<br>1 ø mode (-1)<br>3 ø mode (-3)<br>Resolution*                                                                         | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: 9<br>Frequency<br>45 - 5000 Hz<br>0.1% + 1 digit<br>0.01 Hz / 0.1 Hz / 1 Hz                                                                                                                                                                                                                            | hase: High:<br>or 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 10<br>Phase<br>< 2000 Hz<br>> 2000 Hz<br>> 2000 Hz<br>0.5°<br>5°<br>0.1° / 1°                                                                                             | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>High 7.5 A, Low: 15.0 A; 4<br>0.0 A; 1 Phase: High: 15.0 A<br>Voltage (AC)<br>0-300 V<br>< 1000 Hz / > 1000 Hz<br>0.05% + 250 mV<br>0.1% + 0.1%/kHz +300MV<br>10 mV                                                                                                          | z - 2000 Hz<br>Constant power m<br>6000Lx<br>500Lx: 3 Phase: I<br>a, Low: 30.0 A<br>Current<br>(AC rms)<br>0-50 A<br>0.5% + 150 mA<br>0.5% + 50 mA<br>1 mA                                                      | High: 3.8, Low<br>Real Power<br>0-5 kW<br>0.5% + 9 W<br>0.5% + 3 W<br>1 W                                          | Apparent<br>Power<br>0-5 kVA<br>0.5% + 9 VA<br>0.5% + 3 VA<br>1 VA                                    | High: 11.3 A,<br>Power<br>Factor<br>0.00-1.00<br>0.03<br>0.01<br>0.01 |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage<br>Option -HF Specifications<br>Measurements:<br>F < 2000 Hz: See standard Lx<br>Specifications; | 3 Phase: High:<br>Current availat<br>3000Lx: 3 Pha:<br>Low: 22.5 A; 6<br>Parameter<br>Range<br>Accuracy* (±)<br>1 ø mode (-1)<br>3 ø mode (-3)<br>Resolution*<br>* Accurac specific                                                   | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: 5<br>Frequency<br>45 - 5000 Hz<br>0.1% + 1 digit<br>0.01 Hz / 0.1 Hz / 1 Hz<br>cations are in % of reading a                                                                                                                                                                                           | hase: High:<br>or 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 10<br>Phase<br>< 2000 Hz<br>> 2000 Hz<br>> 2000 Hz<br>0.5°<br>5°<br>0.1° / 1°<br>nd apply above                                                                           | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>High 7.5 A, Low: 15.0 A; 4<br>0.0 A; 1 Phase: High: 15.0 A<br>Voltage (AC)<br>0-300 V<br>< 1000 Hz / > 1000 Hz<br>0.05% + 250 mV<br>0.1% + 0.1%/kHz +300MV                                                                                                                   | z - 2000 Hz<br>constant power m<br>6000Lx<br>500Lx: 3 Phase: I<br>500Lx: 3 Phase: I<br>Current<br>(AC rms)<br>0-50 A<br>0.5% + 150 mA<br>0.5% + 50 mA<br>1 mA<br>gurations, current, po                         | High: 3.8, Low<br>Real Power<br>0-5 kW<br>0.5% + 9 W<br>0.5% + 3 W<br>1 W<br>wer range and ac                      | Apparent<br>Power<br>0-5 kVA<br>0.5% + 9 VA<br>0.5% + 3 VA<br>1 VA<br>curacy specificatio             | High: 11.3 A,<br>Power<br>Factor<br>0.00-1.00<br>0.03<br>0.01<br>0.01 |  |
| Voltage/Frequency Ranges<br>Max RMS Current at Full Power<br>Max RMS Current at FS Voltage<br>Option -HF Specifications<br>Measurements:<br>F < 2000 Hz: See standard Lx<br>Specifications; | 3 Phase: High:<br>Current availab<br>3000Lx: 3 Pha:<br>Low: 22.5 A; 6<br>Parameter<br>Range<br>Accuracy* (±)<br>1 ø mode (-1)<br>3 ø mode (-3)<br>Resolution*<br>* Accurac specific<br>three. Power fr                                | 5.0 A, Low 10.0 A; 1 P<br>ole at reduced voltage f<br>se: High: 2.5 A, Low: 5.<br>000Lx: 3 Phase: High: !<br>Frequency<br>45 - 5000 Hz<br>0.1% + 1 digit<br>0.01 Hz / 0.1 Hz / 1 Hz<br>rations are in % of reading a<br>actor accuracy applies for PF                                                                                                                                                          | hase: High:<br>or 3000Lx, 4<br>0 A; 1 Phase<br>5.0 A, Low 10<br>Phase<br>< 2000 Hz<br>> 2000 Hz<br>> 2000 Hz<br>0.5°<br>5°<br>0.1° / 1°<br>nd apply above<br>> 0.5 and VA >                                                         | 15.0 A, Low: 30.0 A; Note: C<br>1500Lx, and max voltage for<br>1500Lx, and max voltage for<br>1500Lx, and max voltage for<br>15.0 A; 1 Phase: High: 15.0 A<br>10.0 A; 1 Phase: High: 15.0 A<br>Voltage (AC)<br>0-300 V<br>< 1000 Hz / > 1000 Hz<br>0.05% + 250 mV<br>0.1% + 0.1%/kHz +300MV<br>10 mV<br>100 counts. For multi-chassis confi | z - 2000 Hz<br>constant power m<br>6000Lx<br>500Lx: 3 Phase: I<br>, Low: 30.0 A<br>Current<br>(AC rms)<br>0-50 A<br>0.5% + 150 mA<br>0.5% + 50 mA<br>1 mA<br>gurations, current, po<br>nent specification value | High: 3.8, Low<br>Real Power<br>0-5 kW<br>0.5% + 9 W<br>0.5% + 3 W<br>1 W<br>wer range and ac<br>d for output > 30 | Apparent<br>Power<br>0-5 kVA<br>0.5% + 9 VA<br>0.5% + 3 VA<br>1 VA<br>ccuracy specificatio<br>0 Vrms. | High: 11.3 A,<br>Power<br>Factor<br>0.00-1.00<br>0.03<br>0.01<br>0.01 |  |

© 2009 AMETEK Programmable Power All rights reserved. AMETEK Programmable Power is the trademark of AMETEK Inc., registered in the U.S. and other countries. Elgar, Sorensen, California Instruments, and Power Ten are trademarks of AMETEK Inc., registered in the U.S.

| Model <sup>1</sup> | Output Power | No of Out | Nom. Input Voltage <sup>2</sup> |           |
|--------------------|--------------|-----------|---------------------------------|-----------|
|                    |              | -1        | -3                              |           |
| 3000Lx             | 3 kVA        | 1         | 3                               | 208-230 V |
| 3000Lx-400         | 3 kVA        | 1         | 3                               | 400 V     |
| 4500Lx             | 4.5 kVA      | 1         | 3                               | 208-230 V |
| 4500Lx-400         | 4.5 kVA      | 1         | 3                               | 400 V     |
| 6000Lx             | 6 kVA        | 1         | 3                               | 208-230 V |
| 9000Lx/2           | 9 kVA        | 1         | 3                               | 208-230 V |
| 9000Lx/2-400       | 9 kVA        | 1         | 3                               | 400 V     |
| 12000Lx/2          | 12 kVA       | 1         | 3                               | 208-230 V |
| 13500Lx/3          | 13.5 kVA     | 1         | 3                               | 208-230 V |
| 13500Lx/3-400      | 13.5 kVA     | 1         | 3                               | 400 V     |
| 18000Lx/3          | 18 kVA       | 1         | 3                               | 208-230 V |

Note 1: The /2 or /3 designation indicates number of chassis.

Note 2: All input voltage specifications are for Line to Line three phase, delta or wye. Model 3000Ls (208 V input) can be operated on 230 V L-N single phase if needed.

| HF Table Model | Max. Freq. |
|----------------|------------|
| 3000Lx         | 5000 Hz    |
| 4500Lx         | 5000 Hz    |
| 6000Lx         | 5000 Hz    |
| 9000Lx/2       | 2000 Hz    |
| 12000Lx/2      | 2000 Hz    |
| 13500Lx/3      | 2000 Hz    |
| 18000Lx/3      | 2000 Hz    |
|                |            |

### **Ordering Information**

**Model** Refer to table shown for model numbers and configurations. Specify number of output phases (-1 or -3) as part of model number, eg 4500Lx-1 or 4500Lx-3.

#### Supplied with

| User / Programming Manual on CD-ROM,<br>Software and RS232C serial cable. |                                                                                                  |  |  |  |  |  |
|---------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|--|--|--|--|--|
| Options<br>Input Op<br>-400                                               | 400 ±10% Volt Line to Line AC input.<br>[Not available on 6000Ls, 12000Ls and<br>18000Ls Models] |  |  |  |  |  |
| -480                                                                      | 480 ±10% (3 phase output only)                                                                   |  |  |  |  |  |
| Output<br>-AX                                                             | <b>Options</b><br>Auxiliary outputs, 26 VAC, 5 VAC.<br>Limits upper frequency to 800 Hz.         |  |  |  |  |  |
| -HV                                                                       | 156/312 V output range.                                                                          |  |  |  |  |  |
| -EHV                                                                      | 200/400 V output range.                                                                          |  |  |  |  |  |
| -HF                                                                       | Extends upper frequency limit.<br>See HF table.                                                  |  |  |  |  |  |
| -LF                                                                       | Limits output frequency to 500 Hz.                                                               |  |  |  |  |  |
| <b>Keypad</b><br>-RP                                                      | <b>Options</b><br>LS style rotary knobs                                                          |  |  |  |  |  |

#### **Cabinet Options**

| -RMS | Rackmount Slides. Recommended for |
|------|-----------------------------------|
|      | rack mount applications.          |

C prefix Cabinet System. Installed and pre-wired in 19" cabinet.

### **Controller Options**

- -160 RTCA/DO-160, Change 2, EuroCAE-14D [Section 16, AC only]
- -704F Mil-Std 704 rev A F
- -704 Mil-Std 704 rev D and E test firmware. [AC only]

| ABD  | Airbus Directive 0100.1.8 tests.<br>[AC only]. Requires -ADV and use of<br>Windows PC and included<br>LxGui software. |
|------|-----------------------------------------------------------------------------------------------------------------------|
| AMD  | Airbus AMD24 Test                                                                                                     |
| A350 | Airbus Test Software                                                                                                  |
| AIRB | Airbus A380, A350 & AMD24 package                                                                                     |
| ABL  | Emulates Elgar SL Series                                                                                              |
| B787 | Boeing 787 Test Software                                                                                              |
| ADV  | Advanced feature set. Adds arbitrary waveform generation and harmonic analysis of voltage and current.                |
| GPIB | GPIB interface and APE programming language.                                                                          |
| LAN  | Ethernet Interface.                                                                                                   |
| MB   | Multi-box. Adds controller to auxiliary chassis of multi-chassis systems.                                             |
| MODE | Add phase mode selection for 3 models                                                                                 |
| L22  | Locking Knobs.                                                                                                        |
| LKM  | Clock and Lock Master                                                                                                 |
| LKS  | Clock and Lock Auxiliary                                                                                              |
| LNS  | Line Sync.                                                                                                            |

-EXS External Sync.

#### **Option Matrix**

|     | HF | LF | нν | EHV | LKM | LKS | EXS | AX |
|-----|----|----|----|-----|-----|-----|-----|----|
| HF  | -  | х  | 0  | 0   | х   | х   | 0   | х  |
| LF  | х  | -  | 0  | 0   | 0   | 0   | 0   | 0  |
| HV  | 0  | 0  | -  | х   | 0   | 0   | 0   | 0  |
| EHV | 0  | 0  | х  | -   | 0   | 0   | 0   | 0  |
| LKM | х  | 0  | 0  | 0   | -   | х   | 0   | 0  |
| LKS | х  | 0  | 0  | 0   | х   | -   | х   | 0  |
| EXS | 0  | 0  | 0  | 0   | 0   | х   | -   | 0  |
| AX  | х  | 0  | 0  | 0   | 0   | 0   | 0   | -  |

Note 1: See option matrix

Note2 : -LKS, -LNS and -EXS are mutually exclusive and with Ext Trig function.